
Journal of Applied Mechanics and Technical Physics, Vol. 39, No. 1, 1998 

O P T I M I Z A T I O N  O F  A L A Y E R E D  S P H E R I C A L  I N C L U S I O N  

IN A M A T R I X  I N  T R I A X I A L  T E N S I O N  AT I N F I N I T Y  

V.  V.  A l e k h i n  a n d  L. V .  B a e v  UDC 539.3 

We consider the problem of synthesis, from a finite set of elastic homogeneous isotropic 
materials, of a multilayered spherical inclusion of minimum weight in a matrix stretched at 
infinity by three different uniform axial forces, under given restrictions on the strength and 
thickness of the inclusion. Necessary optimality conditions have been obtained, a computational 
algorithm has been constructed, and an example of calculation of an optimum inclusion has been 
given. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  Let there exist a set W consisting of k homogeneous isotropic 
materials. This set is used to synthesize a layered spherical inclusion of minimum weight under given 
restrictions on the strength and thickness of the inclusion. 

Let rl  and r2 be the radii of the inner and outer surfaces of an inclusion (see Fig. 1) located in a matrix 
stretched at infinity by three uniform axial forces ql, q2, and q3. The pressure p is given at the internal boundary 
rx. The stress-strain state (SSS) of the multilayered inclusion and the matrix in the spherical coordinate system 
(r, 0, ~) is described by a boundary-value problem that includes the equilibrium equations 
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the relations of Hooke's law 

E [l U___~u(ekt6tt)6ij+eij], (1.2) oij = 1 + u 

where the components of the strain tensor are expressed via radial Ur(r, O, ~o), meridionai uo(r, O, ~), and 
circumferential u~(r, O, ~o) displacements in the form 
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Fig. 1 

and the boundary conditions 

a, ,(rl ,  O, ~) = -p ,  a,e(r~, O, ~) = O, a,~(~,, e, ~) = O, 

arr(oo, 0, ~) = ql sin 2 0 cos 2 ~o + q2 sin 2 0 sin 2 ~o + q3 cos 2 0, 

aro(oo, 8, ~o) = sin 0 cos O (ql cos 2 ~o + q2 sin 2 qo - q3), (1.4) 

ar~,(oo, 0, ~) = (q2 - ql) sin 0 sin ~o cos ~o. 

Here E(r) and v(r) are Young's modulus and the Poisson ratio of the inclusion's layer materials and the 
matrix. 

It is necessary to prescribe conjugation conditions (continuity of the displacements ur, us, and u~ 
and the stresses art ,  aro, and ar~,) at the internal boundaries ri E (rl ,  r2] of the inclusion layers and at the 
inclusion-matrix boundary itself, where the characteristics of the medium undergo a discontinuity: 

[-r(r~, 0, ~) l  = [u0(ri, 0, ~)]  = [u~(~i, 0, ~)1 = 0, (1.5) 

[arrCr~,0,~)l  = [ a r 0 ( ~ , 0 , ~ ) l  = [ar~(~ ,0 ,~ ' ) l  = 0. 

Let a,  R, and p.  be quantit ies having the dimensionality of stress, length, and density, respectively. 
We introduce new dimensionless variables (later on, the asterisk is omitted): 

, ui ri aii, a s =  as E * =  E p q~= q i, p. P ~=-~' ~=-~' a ~ i = a  7 '  a'  P ' = a '  a p. 

where as and p are the s t rength  and density limits of the materials from the set W. We make the substitution 
of coordinates 

= ~, + z(~2 - ~,) ,  z e [0, II, (1.6) 

which transforms the variable domain [rl, r2] into the constant domain [0, 1]. We introduce the piecewise- 
constant function 

~ ( x ) =  { ~ j ; x e [ z j ,  z i + , ) , j = l , . . . , n } ,  x, = 0 ,  x ,+ ,  = 1 ,  (1.7) 

which characterizes the s t ructure  of the layered inclusion, i.e., the number,  dimensions, and materials of the 
constituent layers. The  quanti t ies m i belong to the finite discrete set 

v = { ~ , . . . , a ~ } ,  (1.8) 

which corresponds to the given set of materials W. Now all the characteristics of the materials from the set 
W are the distribution functions a(x) on the closed interval [0, 1]. It is convenient to give the set of integers 
U = {1, . . .  ,k} as U. After that ,  a(x) = i, where x e [xj, xj+l), means that  the j t h  layer of the inclusion 
consists of the ith material  from the set W. 
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Since the s t ructure  of the layered inclusion is determined by the function a ( x )  and the geometry is 
determined by the dimensions rl and r2, we consider the pair {a(x), rz } as a control (the outer radius r2 can 
be assumed to be fixed without loss of generality), where a(x)  e U (1.8) and 

0 < a ~< rl ~< b < r2. (1.9) 

Here a and b are given limits within which the inner radius rl can vary. 
The problem of op t imum design consists in the following. Among the piecewise-constant functions c~(z) 

(1.7) whose range of values belongs to the set U (1.8) and the parameters rl of the interval [a, b], we need to 
find a control {a(z),  rl  } that  ensures a minimum of the weight functional 

r2 1 
F[c t ,  r l]  -- 4"/1" f p(ct) r 2 dr -~ / G(Et, rl,  x )dx  (1.10) 

rl 0 

for a given restriction on the tensile strength 

TI(z , O, r u , ,  uO, u~ ,  o'rT, o'rO, o'r~, a ,  rl)  ~< 0. (1.11) 

We regard the Mises yield condition as restriction (1.11): 
2 7"/ ---- (O'rr --0"00) 2 + (0"00 -- o'tp~) 2 "lt" ( a ~  -- o.rr) 2 "4- 6 (o'r 2 "~" o.r~ + o'2~a)- 20.2 • O. (1.12) 

Inequality (1.12) can be writ ten in terms of ur, uo,  u~, o'rr, o'r0, and o'r~ using the Hooke's law relations (1.2). 
2. N e c e s s a r y  O p t i m a l i t y  C o n d i t i o n s .  To derive necessary optimality conditions in problem (1.i)-  

(1.12), we need to obtain expressions for variations of the desired functional (1.10) and the restriction (1.12) 
by varying the control {a(x),  rz}. With this in view, we transform the boundary-value problem (1.1)-(1.5). 
We introduce three spherical coordinate systems (r, 0i, ~i) (i = 1, 2, 3), where the angle 0i is counted off from 
the Xi axis of the Cartesian coordinate system (X1, X2,  X3).  Figure 1 shows a coordinate system (r, 0, 4) 
that  coincides in this case with the coordinate system (r, 03, ~a). By virtue of the linear character of the 
elastic equations, the solution of the initial problem (1.1)-(1.5) can be represented as a superposition of four 
solutions. The first solution (Problem 1) describes the SSS of a layered spherical inclusion in an infinite matrix 
under the action of an internal pressure p. The remaining three solutions (Problem 2) determine the SSS of 
the inclusion in the matr ix  under the action of a uniform uniaxial force qi along the X i  axis at infinity [1]. 
We consider the da ta  of the problem. 

Problem 1 includes the equilibrium equation 

do'rr 2 
Hooke's law dr + (o'rr -- 0"00) = O, (2.1) 

E [ , ,  1 
o'rr--  1+'----~ ~ \ d r  + 2  + d r J '  (2.2) 

0"oo -- 0 . ~  = 1 +"-'-~ \ d r  + 2 + , 

and the boundary conditions 
art (rl) = --p, arr(Or = 0. (2.3) 

The SSS of an inclusion-free matrix that  is subject to condition (2.3) at infinity is described by the 
formulas 

a 2 E m  a 
u~ - - -  0 .~ = -2o.oo - - (2.4) 

- r 2 ' 1 + V m  r 3 ' 

where Em and v,~ are Young's modulus and the Poisson ratio of the matrix material. 
The conjugation conditions (1.5) at the internal boundaries of the inclusion layers and relations (1.6) 

make it possible to introduce the phase variables 

Y(z)  = (u,,  0.~,) t (2.5) 
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on the interval [0, 1] (the superscript t means the transpose of the vector or matrix). 
Using solution (2.4) for the matrix, problem (2.1)-(2.3) now can be represented as a boundary-value 

problem in the unknown Y(x)  (2.5) only for the spherical inclusion: 

r2(1 Jr Um) y2(1) ---- 0. (2.6) 
Y'(x)  = A(a,  r l ,  x) Y(x),  y2(0) - - p ,  yl(1) + 2Era 

Here the elements a 0" of the matrix A(a, r l ,  x) are of the form 

2v (r2 - r,) (I + v)(l - 2v) 
a,1 = r(v - 1) ' a,2 = E(1 - -  b') (r2 - -  rl) ,  

2E(r2 - -  rl) (2 - -  4y)(r2 - -  rl) 
a2,  = r2(1 - . )  ' a22 = ~ ( .  - I)  

We consider Problem 2. According to [2], we write the solution in the matrix and the spherical inclusion 
in the coordinate system (r, 0i, ~i) in the form 

~,(~, o~) = q~[~,(~) + ~2(~) cos 20d, ~0(~, o~) = q~3(,) sin 20~, 
(2.7) 

art(r, Oi)= qi [0.1(r)+a2(r)  cos20i], aro(r, Oi)= qio's(r) sin20i 

under the action of a uniform uniaxial force qi along the Xi axis. Because Problem 2 is axisymmetric, all 
quantities do not depend on the coordinate ~i, and the corresponding circumferential displacement u~, 
tangential stresses o'r~ and 0.e~, and strains er~ and ee~ are equal to zero. The nonvanishing components 
of the displacement vector and the stress and strain tensors are subject to conditions (1.1)-(1.3), and the 
boundary conditions (1.4) are reduced to the form 

qi qi (1 + cos 20i), 0.rO(OO, Oi) "- - - ~  sin20i. (2.8) 0.rr(rl, Oi) = ~rO(rl, Oi) = O, 0.rr(O0, Oi) = 

The SSS of an inclusion-free matrix that is subject to condition (2.8) at infinity is described by the 
formulas [2] 

al 3a2 5 -- 4Vm a3 1 -- Vm 9a2 5 -- 4vm a3 1 + yen 
~' = ~'- 7 + 3(1 - 2,,.,) ~ + 2-5g;-~ ~' ~ = --;z- + 1 - 2~-----~ ~ + 2----~-~ ~' 

6a2 2a3 l + v r a  2Em [a] 6a2 5-vm a3] I 
u~ = r4 r2 2Era r, a, -- 1 + v-----~ .r'3 § r --~- 3(i 2vm) ~ j § 2' (2.9) 

2Era rlSa2 5 - v m  as] 1 2Era [12a2 l + v m  a3] 1 
0.2=1+~-----=t r5 i : 2 - ~ _  + ~ '  0.3=1+~-----=t7 1 - 2 ~ m ~ _  2" 

The conjugation conditions (1.5) and relations (1.6) and (2.7) allow us to introduce the continuous 
phase variables 

Z ( X )  = ( U l ,  722, U3, 0.1, 0"2, 0"3) t (2.10) 

on the interval [0, 1]. 
Using the solution (2.9) for the matrix, we now can represent Problem 2 [(1.1)-(1.3) and (2.8)] as a 

boundary-value problem in the unknown Z(x) (2.10) only for the spherical inclusion: 

Z'(x) = B(a ,  r , ,  z) Z(z), z4(0) = zs(0) = z6(0) = 0, 
(2.11) 

Zf(1) = C(Em, vm) Z#(1) + D(Em, v,,). 

Here Z/(x)  = (zl, z2, z3) t and Zt(x) = (z4, zs, ze)t; the nonzero elements bij, cij, and di of the matrices 
B(a,  r l ,  x) and C(E,n, U,n) and the vector DiEm , vm) are of the form 

(1 + ~)(1 - 2~) 
2 21/(r  2 - -  r l )  bl  4 = b25 = ( r  2 _ r l ) ,  bll :2b13 =b22 = ~b23 = - b 6 s  = r ( v - 1 )  ' E ( 1 - v )  
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536  - 

2 2E(r2 - r l )  
b41 =2b4a = b52 = ~ b53 = b62 - r2(1 _ v )  , 

b44 = b 5 5 =  ( 2 - 4 v ) ( r 2 - r l )  
r ( v - 1 )  , a =  

r 2 ( l + v m )  
Cl 1 = 2Era ' 

2(1 + v )  1 1 1 r 2 - r l  
(r2 - - r l ) ,  ~b32 = b33 = -b46 = -5b56 = -5b66 - r 

565 = E ( 5 + v ) ( r 2 - r l )  
r 2 ( 1 - - v 2 )  ' 

r 2 ( l + v m )  
4 E m ( 7 - b v m ) '  

c22 = a (19urn - 17), 

c12 = a ( 3 v m - 1 ) ,  C l 3 = a ( 5 - 7 v m ) ,  

c23 = a (15 - 21vm), c32 --~ a ( 1 0  - -  14b'm) , 

1 - -  /.]~rt 
- - ,  d2 = - d a  = 30a (1 - v=).  dl = 24a 1 + v,n c33 = a (26urn - 22), 

The stress-tensor components in the restriction on strength (1.12) are expressed, in the original spherical 
coordinate system (r, 0, ~o), via the solutions V(z)  and Z(x) of the boundary-value problems (2.6) and (2.11) 
a s  

arr(r, O, ~o) = Y2 + (z4 -- zs)(ql + q2 + q3) + 2z5[q3 cos 2 0 + (ql cos 2 ~o + q2 sin 2 ~) sin 2 0], 

aoo(r,O,~p)= r ( 1 - - v )  Yl+] - - -vY2A-  v ) ( Z l + Z 2 + 2 z a ) + ~ ( z 4 + z s )  ( q l + q 2 + q 3 )  

[ E E ( 2 +  v) v ] 
- 2 7"(1 -- v) z2 + r---~'--'v-~) z3 + ~ zs [q3 sin 2 O + (ql cos 2 ~o + q2sin 2 ~o) cos 2 O] 

2[ E E(1 + 2v) v ](ql sin 2 ~o + q2cos 2 ~o), 
r ( 1 - - v )  z2+ r C l - v  2) z a - I - ~ z 8  

E v [ E 
a ~ , ( r ,  0 , ~ )  - r(1 -- v) U, + 1 -- U 2  + r ( 1 - -  ~ ) ( z l  + z 2  + 2 z 3 )  

v ] 2[ E E(1 + 2u) v ] 
+ ~ (z4 + zs) (ql + q2 + q3) - r(1 -- v) z2 + r(1 -- v 2) z3 + ~ z5 [q3 sin 2 0 

2[ E E ( 2 +  v) v ] 
+ (ql cos2 ~o "4- q2 sin2 r cos2 0] - r(1 = v) z2 + r-~ --~v'~) z3 + ~ z5 (ql sin 2 ~o + q2 cos 2 ~), 

ar0(r, 0, ~o) = z6(qa -- ql cos 2 ~o -- q2 sin 2 ~o) sin 20, 

E 
ar~o(r,O,r = z6(ql - q2) s in0sin2% ao~(r,O,~o) - r(1 + v) za(ql - q2) cos0sin2~. 

Thus, the initial problem (1.1)-(1.5) has reduced to the solution of the boundary-value problems (2.6) 

(2.12) 

and (2.11) in the unknown vector functions Y(z)  and Z(x). 
We replace the local restriction (1.12) by the equivalent integral restriction 

1 

Fl[~ , r l ,  Y,Z] = 0.5/{r / ( . . . )  + [77(...)l} dV = f GI(~, rl, x, Y ,Z)  = 0, 
v 0 

where V is the volume of the spherical inclusion; by the parity of the function 77(...) relative to the coordinate 
planes X I O X 2 ,  X 2 0 X 3 ,  and X I O X a ,  we have the function 

~ / 2  ~ / 2  

GI(~ , rx ,x ,Y ,Z)  = 4(r2 - rx)r 2 / / {y(...) + 1,7(. ..)l} sin O d~odO. (2.13) 
0 0 

The functional (2.12) has a Frechet derivative [3], because the function It/(...)[, which is the modulus 
from the Mises yield condition, can vanish only at a finite number of points, i.e., on a set of zero measure, in 
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the layered spherical inclusion. 
Let {a(x), r~} be the optimum control from the admissible set (1.8) and (1.9) that minimizes the 

functional (1.10) and satisfies restriction (2.12). We consider the perturbed control {a*(x), r~ + 6r~} [3] 

g(z), z e D ,  g(x) eU, a*(x) = ~ r ,+6r,  e[a ,b] ,  l a r l [ < e ,  (2.14) 
a(x), z C D ,  mes(D)<e ,  

where D C [0, 1] is a set of small measure and e > 0 is a small quantity. 
Using standard techniques [3], one can obtain the principal parts of the increments of the functionals 

(1.10) and (2.12) [for brevity the arguments of the functions associated with the unperturbed control {a(x), r~ } 
are omitted]: 

6F[...] = / { O ( o * , . . . )  - O(a, . . . )}  dz + Sat , ,  
D (2.15) 

6F~[...] = /{U(a* , . . . )  - i ( a , . . . ) }  dx + $16rl. 
D 

Here 

M(a, rl, x, Y, Z, @, @) = Gl(a, r,, x, Y, Z) + @t(x) A(a, rl, x)Y(z) + @t(x) B(a, r,, x) Z(x), 

/ j(  0 (2.16) 1 0 G(a, rl x) dx, $1 = M(a,  rl Y ,  Z ,~ ,  ~) dx. s =  , , x ,  

0 0 

The vectors of conjugate variables @(x) = (01,02) t and ~(x)  = (r r Ca, r Cs, r t satisfy the boundary- 
value problems 

0 t 
�9 z)], 

(2.17) 
t91(0) = 0, ,~2(1) r2(1 Jr v,n) ,~1(1) = 0; 

�9 '(~) = - B t ( a ,  r l , ~ ) ~ ' ( , )  - a l ( a , , - 1 , ~ , Y , Z )  , (2.181 

r - r = r = 0, ~,,(1) + C ' (E= ,  ~=) ~ ' i (1)  - 0. 

We write the expanded functional 

J [a , r ,  1 = F[a,  rll + A~F~[a,,'~,Y,Z 1 + A2la - r~ + d }  + Aa{r~ - b + ~ } ,  (2.19/ 

where X1, A2, Aa and (1, (2 are the Lagrange multipliers and the penalty variables, respectively. Using relations 
(2.15) and (2.16), one can write the variation of functional (2.19) as 

~J[.-.1 = / { H ( a , . . . )  - H ( a * , . . . ) } d , + { S  + ~ S ~  - ~ + ~ 3 } ~ , ' ,  +2,~2h 8(, +2~a(~ ~(~; (2.20/ 
D 

H(a,  rl ,  x, Y, Z, ~ ,  ~ )  = -G(a ,  r~, x) - AiM(a, r~, z, Y, Z, ~,  ff~). (2.21) 

Since the control {a(x), rl} is optimum (minimum), the condition 6g[...] /> 0 should be satisfied for 
any admissible control {a*(x), rl + 6rl } (2.14). By virtue of the arbitrary character of the variations 6rl and 
~i~i, we have from relation (2.20) 

S + X~S~ - X2 + X3 = 0; (2.22) 

A2(a - rl) -- 0, X3(rl - b) = 0, A2 >i 0, Aa >i 0. (2.23) 

Since the set of small measure D can be closely located almost everywhere on the interval [0, l], the condition 
of the maximum of the Hamiltonian function H(.. .)  (2.21) in the argument (~ [3] should be satisfied for almost 
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all x e [0, 1]: 

H(a, r l , x , Y , Z , ~ , f i ) =  max H(a*,r l ,x ,Y,Z,~, f i ) .  (2.24) 

Thus, we have obtained that the optimum control {a(x),rl} and the corresponding optimum 
trajectories Y(x) and Z(x) and vectors of conjugate variables ~(x)  and fi(x) should satisfy the boundary- 
value problems (2.6), (2.11), (2.17), and (2.18), relations (1.8), (1.9), (2.12), and (2.23), and the optimality 
conditions (2.22) and (2.24). 

3. C o m p u t a t i o n a l  A l g o r i t h m .  The main idea of the direct method of solving optimum-design 
problems is to construct a sequence of controls {a(z), rl }j (j = 1, 2 , . . . )  that minimizes the desired functional 
(1.10). To do this, we introduce a uniform grid {xi} by dividing the interval [0, 1] into n intervals Di modeling 
sets of small measure. We give the initial control {a(z),rx} from the admissible domain (1.8), (1.9), and 
(2.12). Clearly, the function a(x) is piecewise-constant with intervals of constancy Di = [xi, xi+1) on which 
this function assumes values from the set U (1.8). The subsequent approximation {a*(x), rl + 6rl} on a certain 
set Di is sought in the form (2.14): 

hi, xEDi,  a i EU, 
a*(z) = a(z), z r Di; 

(3.1) 

rl -It" 6rl E [a, b], [~rll < e (3.2) 

and is determined from the linearized optimization problem: to find an admissible perturbation {aj,  6rl } on 
a given set such that it ensures a maximum decrease in the functional F[. . . ]  (1.10), i.e., a minimum of the 
variation 6El. . .]  (2.15), under conditions (3.1) and (3.2) and the linearized restriction (2.12) 

F1 [a*, rl  -{- 6rl, Y + 6Y, Z + 6Z] ~ F1[a, r l ,  Y, Z] + $Fl[a, r l ,  Y,  Z] = 0, (3.3) 

where the expression for 6F1[...] is given by formula (2.15). This linearized problem is a variant of the problem 
considered in Secs. 1 and 2. Hence we directly obtain that the optimum perturbation {31, (frl} should satisfy 
the relations 

6 r l = - 7 { S + A 1 S 1 - A 2 + A 3 } ,  7 t>0;  (3.4) 

~2(a - r l  - 6rl) = 0, )~3(rl ar (~rl - b) = 0, A2 ~ 0, ~3 t> 0 (3.5) 

and restrictions (3.2) and (3.3). 
In the process of numerical calculation, the Lagrange multipliers 7, A2, and ha are found from (3.2) 

and (3.5). The optimum correction a j  (3.1) is determined as follows. At $1 ~ 0, we have from relation (3.3) 

~r l~- -{ / [U(o t j , . . . ) - i (o l , . . . ) ]dx-{ -Fl[~ , r l ,V ,Z]} /S , .  (3.6) 

Di 

Substituting (3.6) into 6F[. . .]  (2.15), we find a correction a j  that minimizes the variation 6, F[. . .]  from the 
condition 

[ H(a j , r l , x ,Y ,Z ,a ,  f i)dx-- max [ H(a.,rl,x, Y,Z,  ~, fi)dx, 
J a .Eu J 
Di Di 

where 

S M(a , , r l , x ,Y ,Z ,~ , f i ) .  H ( a . ,  r l ,  x, Y, Z, r  fit) = -G(a,, rl ,  x) "I- ~11 

For $1 = 0, the opt imum correction {aj, ~rl} is determined from relation (3.4) and the minimum condition 
for the variation (~F[...] (2.15): . 

(~r I : - " } ' { S  - ,'~2 -~- ~3 } ,  f a(o~j, rl,x)dx : min [ G(a,,rx,x)dx, 
J o~.EU J 
Di Di 
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TABLE 1 

Material 

Spheroplastic 
Duralumin 
Titanium alloy 
Steel 
Copper 

P 

0.65 
2.85 
4.6 
7.8 
8.93 

E 

270 
7100 

12000 
21000 
11200 

V 

0.27 
0.33 
0.32 
0.3 
0.33 

O" s 

4.5 
44 
80 

120 
20 

with allowance for restrictions (3.2), (3.3), and (3.5). 
Having constructed the new control {a*(x) , r l  + 6ri}, we take it as the initial one and construct the 

next approximation. The  process is assumed to end for a given parti t ion grid {zi} if the control {a(x), rl} 
changes in none of the sets Di. The solution obtained is a local min imum in the problem considered. 

Example. The  set W consists of five materials. The dimensionless mechanical and physical characteristics 
of these materials are listed in Table 1. 

The pressure p = 0.01 is set on the inner surface of the spherical inclusion. The  inner radius r l  of the 
inclusion can vary within the interval [0.75, 0.95], and the outer radius r2 is considered fixed and equal to 
unity. The inclusion-containing matrix consists of spheroplastic and is loaded at infinity by the uniform axial 
forces ql = 4, q2 = 0 ,  and q3 = - - 4 ,  i.e., the matrix is subjected to simple shear at infinity. The  region of the 
inclusion is parti t ioned into 50 sections equal in thickness modeling the sets Di. 

The variations of the control in the above computat ional  algorithm have a local character, i.e., the 
control changes in just one of the elementary intervals (the set Di) in each iteration. As is known, such a 
variation can lead to a deadlock: the structure can be nonopt imum and it is impossible to improve it by a local 
variation. Therefore, we used various thickness distributions of the materials of the inclusion to be optimized. 
Based on computational  results and some mechanical considerations, we chose new initial approximations, etc. 
As a result, we obtained a four-layer inclusion of inner radius rl  = 0.75123 and weight F* = 8.16 with layers 
[0.75123, 0.77611] and [0.82088, 0.92537] of t i tanium alloy, [0.77611, 0.82088] of spheroplastic, and [0.92537, 1] 
of Duralumin. The  lightest homogeneous inclusion that  satisfies the restrictions on tensile strength (1.12) and 
body thickness (1.9) under prescribed loads p, ql, q2, and q3 is an inclusion made of t i tan ium alloy of inner 
radius rl  = 0.80813 and weight F.  = 9.099. The relative gain in weight for an op t imum inclusion compared 
with this homogeneous inclusion was equal to (1 - F*/F.). 100% = 10.3%. 
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